Mathematical Methods for Engineers (MA 713) Problem Sheet - 5

Bases and Dimension

- 1. Label the following statements as true or false.
 - (a) The zero vector space has no basis.
 - (b) Every vector space that is generated by a finite set has a basis.
 - (c) Every vector space has a finite basis.
 - (d) A vector space cannot have more than one basis.
 - (e) If a vector space has a finite basis, then the number of vectors in every basis is the same.
 - (f) The dimension of $P_n(F)$ is *n*.
 - (g) The dimension of $M_{m \times n}(F)$ is m + n.
 - (h) Suppose that *V* is a finite-dimensional vector space, that S_1 is a linearly independent subset of *V*, and that S_2 is a subset of *V* that generates *V*. Then S_1 cannot contain more vectors than S_2 .
 - (i) If *S* generates the vector space *V*, then every vector in *V* can be written as a linear combination of vectors in *S* in only one way.
 - (j) Every subspace of a finite-dimensional space is finite-dimensional.
 - (k) If *V* is a vector space having dimension *n*, then *V* has exactly one subspace with dimension 0 and exactly one subspace with dimension *n*.
 - (l) If *V* is a vector space having dimension *n*, and if *S* is a subset of *V* with *n* vectors, then *S* is linearly independent if and only if *S* spans *V*.
- 2. Determine which of the following sets are bases for \mathbb{R}^3 .
 - (a) $\{(1,2,-1), (1,0,2), (2,1,1)\}$
 - (b) $\{(1, -3, -2), (-3, 1, 3), (-2, -10, -2)\}$
- 3. Determine which of the following sets are bases for $P_2(\mathbb{R})$.
 - (a) $\{-1 x + 2x^2, 2 + x 2x^2, 1 2x + 4x^2\}$
 - (b) $\{1-2x-2x^2, -2+3x-x^2, 1-x+6x^2\}$
 - (c) $\{1+2x-x^2, 4-2x+x^2, -1+18x-9x^2\}$
- 4. Do the polynomials $x^3 2x^2 + 1$, $4x^2 x + 3$, and 3x 2 generate $P_3(\mathbb{R})$? Justify your answer.
- 5. Is $\{(1,4,-6), (1,5,8), (2,1,1), (0,1,0)\}$ a linearly independent subset of \mathbb{R}^3 ? Justify your answer.
- 6. Give three different bases for F^2 and for $M_{2\times 2}(F)$.
- 7. The vectors $u_1 = (2, -3, 1)$, $u_2 = (1, 4, -2)$, $u_3 = (-8, 12, -4)$, $u_4 = (1, 37, -17)$, and $u_5 = (-3, -5, 8)$ generate \mathbb{R}^3 . Find a subset of the set $\{u_1, u_2, u_3, u_4, u_5\}$ that is a basis for \mathbb{R}^3 .

8. Let *W* denote the subspace of \mathbb{R}^5 consisting of all the vectors having coordinates that sum to zero. The vectors

$$u_1 = (2, -3, 4, -5, 2), \quad u_2 = (-6, 9, -12, 15, -6), \\ u_3 = (3, -2, 7, -9, 1), \quad u_4 = (2, -8, 2, -2, 6), \\ u_5 = (-1, 1, 2, 1, -3), \quad u_6 = (0, -3, -18, 9, 12), \\ u_7 = (1, 0, -2, 3, -2), \quad u_8 = (2, -1, 1, -9, 7)$$

generate *W*. Find a subset of the set $\{u_1, u_2, ..., u_8\}$ that is a basis for *W*.

- 9. The vectors $u_1 = (1, 1, 1, 1)$, $u_2 = (0, 1, 1, 1)$, $u_3 = (0, 0, 1, 1)$, and $u_4 = (0, 0, 0, 1)$ form a basis for F^4 . Find the unique representation of an arbitrary vector (a_1, a_2, a_3, a_4) in F^4 as a linear combination of u_1, u_2, u_3 , and u_4 .
- 10. In each part, use the Lagrange interpolation formula to construct the polynomial of smallest degree whose graph contains the following points.
 - (a) (-2, -6), (-1, 5), (1, 3)
 - (b) (-4, 24), (1, 9), (3, 3)
 - (c) (-2,3), (-1,-6), (1,0), (3,-2)
 - (d) (-3, -30), (-2, 7), (0, 15), (1, 10)
- 11. Let *u* and *v* be distinct vectors of a vector space *V*. Show that if $\{u, v\}$ is a basis for *V* and *a* and *b* are nonzero scalars, then both $\{u + v, au\}$ and $\{au, bv\}$ are also bases for *V*.
- 12. Let u, v, and w be distinct vectors of a vector space V. Show that if $\{u, v, w\}$ is a basis for V, then $\{u + v + w, v + w, w\}$ is also a basis for V.
- 13. The set of solutions to the system of linear equations

$$x_1 - 2x_2 + x_3 = 0$$
$$2x_1 - 3x_2 + x_3 = 0$$

is a subspace of \mathbb{R}^3 . Find a basis for this subspace.

14. Find bases for the following subspaces of F^5 :

$$W_1 = \left\{ (a_1, a_2, a_3, a_4, a_5) \in F^5 : a_1 - a_3 - a_4 = 0 \right\}$$

and

$$W_2 = \left\{ (a_1, a_2, a_3, a_4, a_5) \in F^5 : a_2 = a_3 = a_4 \text{ and } a_1 + a_5 = 0 \right\}$$

What are the dimensions of W_1 and W_2 ?

- 15. The set of all $n \times n$ matrices having trace equal to zero is a subspace W of $M_{n \times n}(F)$. Find a basis for W. What is the dimension of W?
- 16. The set of all upper triangular $n \times n$ matrices is a subspace W of $M_{n \times n}(F)$. Find a basis for W. What is the dimension of W?
- 17. The set of all skew-symmetric $n \times n$ matrices is a subspace W of $M_{n \times n}(F)$. Find a basis for W. What is the dimension of W?

- 18. Find a basis for the vector space *V* consisting of all sequences $\{a_n\}$ in a field *F* that have only a finite number of nonzero terms a_n .
- 19. Let W_1 and W_2 be subspaces of a finite-dimensional vector space V. Determine necessary and sufficient conditions on W_1 and W_2 so that $\dim(W_1 \cap W_2) = \dim(W_1)$.
- 20. Let $v_1, v_2, ..., v_k, v$ be vectors in a vector space *V*, and define $W_1 = span(\{v_1, v_2, ..., v_k\})$, and $W_2 = span(\{v_1, v_2, ..., v_k, v\})$.
 - (a) Find necessary and sufficient conditions on *V* such that $\dim(W_1) = \dim(W_2)$.
 - (b) State and prove a relationship involving dim(W_1) and dim(W_2) in the case that dim(W_1) \neq dim(W_2).
- 21. Let f(x) be a polynomial of degree n in $P_n(\mathbb{R})$. Prove that for any $g(x) \in P_n(\mathbb{R})$ there exist scalars c_0, c_1, \ldots, c_n such that

$$g(x) = c_0 f(x) + c_1 f'(x) + c_2 f''(x) + \dots + c_n f^{(n)}(x),$$

where $f^{(n)}(x)$ denotes the *n*th derivative of f(x).

22. Let *V* and *W* be vector spaces over a field *F*. Let

$$Z = \{(v, w) : v \in V \text{ and } w \in W\}.$$

Prove that Z is a vector space over F with the operations

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$
 and $c(v_1, w_1) = (cv_1, cw_1)$.

If *V* and *W* are vector spaces over *F* of dimensions *m* and *n*, determine the dimension of *Z*.

- 23. For a fixed $a \in \mathbb{R}$, determine the dimension of the subspace of $P_n(\mathbb{R})$ defined by $\{f \in P_n(\mathbb{R}) : f(a) = 0\}$.
- 24. Let W_1 denote the set of all polynomials f(x) in P(F) such that in the representation

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

we have $a_i = 0$ whenever *i* is even. Likewise let W_2 denote the set of all polynomials g(x) in P(F) such that in the representation

$$g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0,$$

we have $b_i = 0$ whenever *i* is odd. We proved that $P(F) = W_1 \oplus W_2$. Determine the dimensions of the subspaces $W_1 \cap P_n(F)$ and $W_2 \cap P_n(F)$.

- 25. Let *V* be a finite-dimensional vector space over \mathbb{C} with dimension *n*. Prove that if *V* is now regarded as a vector space over \mathbb{R} , then dim V = 2n.
- 26. (a) Prove that if W_1 and W_2 are finite-dimensional subspaces of a vector space V, then the subspace $W_1 + W_2$ is finite-dimensional, and $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) \dim(W_1 \cap W_2)$. [Hint : Start with a basis $\{u_1, u_2, \ldots, u_k\}$ for $W_1 \cap W_2$ and extend this set to a basis

$$\{u_1, u_2, \ldots, u_k, v_1, v_2, \ldots, v_m\}$$

for W_1 and to a basis

$$\{u_1, u_2, \ldots, u_k, w_1, w_2, \ldots, w_p\}$$

for W_2 .]

(b) Let W_1 and W_2 be finite-dimensional subspaces of a vector space V, and let $V = W_1 + W_2$. Deduce that V is the direct sum of W_1 and W_2 if and only if $\dim(V) = \dim(W_1) + \dim(W_2)$.

$$V = M_{2 \times 2}(F), W_1 = \left\{ \left(\begin{array}{cc} a & b \\ c & a \end{array} \right) \in V : a, b, c \in F \right\},$$

and

$$W_2 = \left\{ \left(\begin{array}{cc} 0 & a \\ -a & b \end{array} \right) \in V : a, b \in F \right\}.$$

Prove that W_1 and W_2 are subspaces of V, and find the dimensions of W_1 , W_2 , $W_1 + W_2$, and $W_1 \cap W_2$.

- 28. Let W_1 and W_2 be subspaces of a vector space V having dimensions m and n, respectively, where $m \ge n$.
 - (a) Prove that $\dim(W_1 \cap W_2) \leq n$.
 - (b) Prove that $\dim(W_1 + W_2) \le m + n$.
- 29. (a) Find an example of subspaces W_1 and W_2 of \mathbb{R}^3 with dimensions *m* and *n*, where m > n > 0, such that dim $(W_1 \cap W_2) = n$.
 - (b) Find an example of subspaces W_1 and W_2 of \mathbb{R}^3 with dimensions *m* and *n*, where m > n > 0, such that dim $(W_1 + W_2) = m + n$.
 - (c) Find an example of subspaces W_1 and W_2 of \mathbb{R}^3 with dimensions m and n, where $m \ge n$, such that both dim $(W_1 \cap W_2) < n$ and dim $(W_1 + W_2) < m + n$.
- 30. (a) Let W_1 and W_2 be subspaces of a vector space V such that $V = W_1 \oplus W_2$. If β_1 and β_2 are bases for W_1 and W_2 , respectively, show that $\beta_1 \cap \beta_2 = \emptyset$ and $\beta_1 \cup \beta_2$ is a basis for V.
 - (b) Conversely, let β_1 and β_2 be disjoint bases for subspaces W_1 and W_2 , respectively, of a vector space *V*. Prove that if $\beta_1 \cup \beta_2$ is a basis for *V*, then $V = W_1 \oplus W_2$.
- 31. (a) Prove that if W₁ is any subspace of a finite-dimensional vector space V, then there exists a subspace W₂ of V such that V = W₁ ⊕ W₂.
 - (b) Let $V = \mathbb{R}^2$ and $W_1 = \{(a_1, 0) : a_1 \in R\}$. Give examples of two different subspaces W_2 and W'_2 such that $V = W_1 \oplus W_2$ and $V = W_1 \oplus W'_2$.
- 32. Let *W* be a subspace of a finite-dimensional vector space *V*, and consider the basis $\{u_1, u_2, ..., u_k\}$ for *W*. Let $\{u_1, u_2, ..., u_k, u_{k+1}, ..., u_n\}$ be an extension of this basis to a basis for *V*.
 - (a) Prove that $\{u_{k+1} + W, u_{k+2} + W, \dots, u_n + W\}$ is a basis for V/W.
 - (b) Derive a formula relating $\dim(V)$, $\dim(W)$, and $\dim(V/W)$.
- 33. Let *V* be the set of all 2×2 matrices *A* with complex entries which satisfy $A_{11} + A_{22} = 0$,
 - (a) Show that *V* is a vector space over the field of real numbers, with the usual operations of matrix addition and multiplication of a matrix by a scalar.
 - (b) Find a basis for this vector space.
 - (c) Let *W* be the set of all matrices *A* in *V* such that $A_{21} = -\overline{A_{12}}$ (the bar denotes complex conjugation). Prove that *W* is a subspace of *V* and find a basis for *W*.
- 34. Let *V* be the set of real numbers. Regard *V* as a vector space over the field of rational numbers, with the usual operations. Prove that this vector space is not finite-dimensional.

35. Show that the set of all ordered triplets (x_1, x_2, x_3) of real numbers such that

$$\frac{x_1}{3} = \frac{x_2}{4} = \frac{x_3}{2}$$

forms a real vector space, where the operations + and . are as in \mathbb{R}^3 . Find a basis and hence the dimension of the vector space.

- 36. Let *S* be a subset of a vector space *V* and $A \subseteq S$. Then the following statements are equivalent :
 - (a) *A* is a minimal set with the property $Sp(A) \supseteq S$;
 - (b) Every element of *S* can be expressed uniquely as a linear combination from *A*;
 - (c) $Sp(A) \supseteq S$ and A is linearly independent;
 - (d) *A* is a maximal linearly independent subset of *S*.
- 37. Find a basis of the vector space $P(\Omega)$ (with the operations defined in the problem sheet "Vector Spaces"), when Ω is an arbitrary non-empty finite set.
- 38. Find all the bases of the following subspaces.
 - (a) For any non-empty subset *A* of Ω , { \emptyset , *A*} is a subspace.
 - (b) For any distinct non-empty subsets *A* and *B* of Ω , { \emptyset , *A*, *B*, *A* \triangle *B*} is another subspace.
- 39. If $\{x_1, x_2, \dots, x_k\}$ is a basis of a subspace *S*, show that
 - (a) $\{\alpha x_1, x_2, \dots, x_k\}$ is a basis of *S* iff $\alpha \neq 0$.
 - (b) $\{x_1 + \beta x_2, x_2, \dots, x_k\}$ is a basis of *S* for any scalar β ,
 - (c) $\{x_1 + \beta x_2, \alpha x_1 + x_2, x_3, \dots, x_k\}$ is a basis of *S* iff $\alpha \beta \neq 1$.
- 40. If a subspace *S* of \mathbb{R}^n has a basis $\{x_1, x_2, ..., x_k\}$ such that all components of x_1 are strictly positive, show that *S* has a basis *B* such that all components of each vector in *B* are strictly positive.
- 41. Let $A \subseteq V$. If one vector in Sp(A) can be expressed uniquely as a linear combination from A then show that A is linearly independent and, so, is a basis of Sp(A).
- 42. Show that a vector space *V* over *F* has a unique basis iff either "d(V) = 0" or "d(V) = 1 and |F| = 2".
- 43. Prove or disprove: if *A*, *B* and *C* are pair-wise disjoint subsets of *V* such that $A \cup B$ and $A \cup C$ are bases of *V*, then Sp(B) = Sp(C).
- 44. Prove or disprove: if *B* is a basis of *V* and *S* is a subspace of *V* then *B* contains a basis of *S*.
- 45. Consider the basis

$$B = \left\{ (1, -1, 0, 0, 0), (1, 0, -1, 0, 0), (1, 0, 0, -1, 0), (1, 0, 0, 0, -1) \right\}$$

of the subspace

$$S = \left\{ (u_1, u_2, u_3, u_4, u_5) : u_1 + u_2 + \ldots + u_5 = 0 \right\}$$

of \mathbb{R}^5 . Using *B*, extend the linearly independent subset $\{x_1, x_2\}$ of *S* to a basis of *S*, where $x_1 = (1, 0, 0, 2, -3)$ and $x_2 = (1, 1, 0, 4, -6)$.

46. Extend $A = \{(1, 1, ..., 1)\}$ to a basis of \mathbb{R}^{n} .

- 47. Let x_1, x_2, \ldots, x_n be fixed distinct real numbers.
 - (a) Show that $\ell_1(t), \ell_2(t), \dots, \ell_n(t)$ form a basis of $P_n(\mathbb{R})$, where $\ell_i(t) = \prod_{j \neq i} (t x_j)$. This basis leads to what is known as **Lagrange's interpolation formula**. If $f(t) \in P_n(\mathbb{R})$ is written as $\sum_{i=1}^n \alpha_i \ell_i(t)$, show that $\alpha_i = f(x_i) / \ell_i(x_i)$.
 - (b) Show that $\psi_1(t), \psi_2(t), \dots, \psi_n(t)$ form a basis of $P_n(\mathbb{R})$, where $\psi_1(t) = 1$ and $\psi_i(t) = \prod_{j=1}^{i-1} (t x_j)$ for $i = 2, \dots, n$. This basis leads to what is known as **Newton's divided difference formula**.
- 48. Find a basis of each of the following subspaces of \mathbb{R}^4 . Also express S_3 in the form

$$\left\{ (x_1, x_2, x_3, x_4) : \frac{x_1}{a_1} = \frac{x_2}{a_2} = \frac{x_3}{a_3} = \frac{x_4}{a_4} \right\}$$

- (a) $S_1 = \{(x_1, x_2, x_3, x_4) : x_1 2x_3 + x_4 = 0\},\$
- (b) $S_2 = \{(x_1, x_2, x_3, x_4) : x_1 + x_2 x_3 = 0, x_2 + 2x_3 x_4 = 0, 2x_1 + 3x_2 x_4 = 0\},\$
- (c) $S_3 = \{(x_1, x_2, x_3, x_4) : x_1 + x_2 x_3 = 0, x_1 + x_2 + 2x_3 + x_4 = 0, x_1 3x_2 x_3 + 2x_4 = 0\}.$
- 49. Let $B = \{x_1, x_2, \dots, x_k\}$ be a basis of *S* and $x = \alpha_1 x_1 + \dots + \alpha_k x_k \notin B$. Obtain a necessary and sufficient condition for $(B \cup \{x\}) \{x_i\}$ to be a basis of *S*.
- 50. Show that the subspaces of continuous functions and differentiable functions are not finitedimensional.
- 51. Let *F* be a finite field with *q* elements and *V* an *n*-dimensional vector space over *F*.
 - (a) Show that $|V| = q^n$.
 - (b) Show (using the Theorem : The vectors $x_1, x_2, ..., x_k$ are linearly dependent iff x_j belongs to the span of $x_1, x_2, ..., x_{j-1}$ for some j such that $\leq j \leq k$) that the number of ordered k-tuples $(x_1, x_2, ..., x_k)$ such that $x_1, x_2, ..., x_k$ are linearly independent vectors in V, is

$$(q^{n}-1)(q^{n}-q)(q^{n}-q^{2})\cdots(q^{n}-q^{k-1})$$

(c) Show that the number of distinct (unordered) bases of *V* is

$$(q^n-1)(q^n-q)\cdots(q^n-q^{n-1})/n!$$

(d) Show that the number of *k*-dimensional subspaces of *V* is

$$\frac{(q^n-1)(q^n-q)\cdots(q^n-q^{k-1})}{(q^k-1)(q^k-q)\cdots(q^k-q^{k-1})} = \frac{(q^n-1)(q^{n-1}-1)\cdots(q^{n-k+1}-1)}{(q^k-1)(q^{k-1}-1)\cdots(q-1)}$$

This number is usually denoted by $\begin{bmatrix} n \\ k \end{bmatrix}_q$.

- (e) Show that the number of ℓ -dimensional subspaces of *V* containing a given *k*-dimensional subspace is $\begin{bmatrix} n-k \\ \ell-k \end{bmatrix}_{a}$.
- 52. If *F* is a subfield of a finite field *G*, prove that the number of elements in *G* is a power of the number of elements in *F*.
- 53. Let *F* be a subfield of a field *G* and let $x_1, x_2, ..., x_k \in F^n$. Show that $x_1, x_2, ..., x_k$ are linearly independent in F^n over *F* iff they are linearly independent in G^n over *G*.

[Hint : first consider the case k = n.]